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mediated effects of elevated CO2, we included an irriga-
tion treatment. We assessed root standing mass, morphol-
ogy, residence time and seasonal appearance/disappearance 
of community-aggregated roots, as well as mass and N 
losses during decomposition of two dominant grass species 
(a C3 and a C4). In contrast to what is common in mesic 
grasslands, greater root standing mass under elevated CO2 
resulted from increased production, unmatched by disap-
pearance. Elevated CO2 plus warming produced roots that 
were longer, thinner and had greater surface area, which, 
together with greater standing biomass, could potentially 
alter root function and dynamics. Decomposition increased 
under environmental conditions generated by elevated CO2, 
but not those generated by warming, likely due to soil des-
iccation with warming. Elevated CO2, particularly under 
warming, slowed N release from C4—but not C3—roots, 
and consequently could indirectly affect N availability 
through treatment effects on species composition. Elevated 
CO2 and warming effects on root morphology and decom-
position could offset increased C inputs from greater root 
biomass, thereby limiting future net C accrual in this semi-
arid grassland.

Keywords E levated CO2 · Warming · Roots · 
Decomposition · Production · Death · Turnover · 
Morphology

Introduction

Temperate grasslands are considered carbon (C) sinks 
(Jones and Donnelly 2004, Robinson 2007), due, to a large 
extent, to the substantial supply of C to soil from below-
ground biomass (Jackson et  al. 1996). The majority of C 
assimilation in grasslands is allocated belowground (Hui 

Abstract  Future ecosystem properties of grasslands 
will be driven largely by belowground biomass responses 
to climate change, which are challenging to understand 
due to experimental and technical constraints. We used a 
multi-faceted approach to explore single and combined 
impacts of elevated CO2 and warming on root carbon 
(C) and nitrogen (N) dynamics in a temperate, semiarid, 
native grassland at the Prairie Heating and CO2 Enrich-
ment experiment. To investigate the indirect, moisture 
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and Jackson 2006), particularly as roots—which in grass-
lands are mainly fine roots smaller than 2 mm in diameter 
(Jackson et al. 1997). In fact, temperate grasslands have the 
greatest density of fine root biomass among biomes; while 
they occupy 7 % of the land area, they hold 17 % of global 
fine root biomass and 41 % of the fine root length, greater 
portions than any other biome (Jackson et  al. 1997). Fur-
ther, fine roots contain a large proportion of the ecosystem’s 
nitrogen (N), and their recycling via litter decomposition 
should impact ecosystem level N and productivity (Parton 
et al. 2007a), feeding back to C storage. Thus, understand-
ing the response of fine roots to climate change and their 
role in soil C and N dynamics is paramount to predicting 
the global C balance (Norby and Jackson 2000). However, 
while their small diameter, belowground location, chemi-
cal composition and turnover rates distinguish them from 
aboveground plant pools, studying fine roots and their 
dynamics is methodologically challenging, and thus root 
dynamics remain poorly understood.

Climate change is anticipated to involve concomitant 
increases in CO2 concentrations and temperature (Solo-
mon et al. 2007), but studies have mostly looked at impacts 
of individual factors. Elevated CO2 has positive to neutral 
effects on grassland root standing stocks (Arnone et  al. 
2000), but responses can be dependent on individual spe-
cies (Anderson et al. 2010; LeCain et al. 2006). Both root 
production and mortality have been observed to increase 
under elevated CO2 in semiarid (Milchunas et  al. 2005) 
and mesic grasslands (Allard et  al. 2005). Warming stud-
ies on root dynamics in grasslands are scarce and findings 
include increases, decreases and no effects of warming on 
root biomass, production and mortality (Bai et  al. 2010; 
De Boeck et al. 2008; Fitter et al. 1999). The few available 
observations of elevated CO2 in combination with warm-
ing from individual species (Volder et al. 2007; Wan et al. 
2004) and a Mediterranean grassland (Shaw et  al. 2002) 
have suggested complex, non-additive effects on root pro-
duction and mortality, which may depend on root diameter 
(Pilon et al. 2013). Production and mortality are commonly 
assessed with minirhizotron observations of appear-
ance and disappearance of roots. However, disappearance 
encompasses both death and decomposition of material 
(Norby and Jackson 2000), a fact often ignored, and which 
may mask potential decoupling of these two processes.

In water-limited systems such as the semiarid mixed 
grass prairies of central North America, where our study 
took place, changes in water availability generated by cli-
mate change are expected to be important for root dynam-
ics. Elevated CO2 and warming have considerable and 
opposite impacts on soil water (increase with elevated CO2 
and decrease with warming; Morgan et  al. 2011). These 
effects are likely to affect not only root decomposition, 
but also production, mortality (Milchunas et al. 2005) and 

morphology (Ostonen et  al. 2007). In addition, both fac-
tors can alter plant community composition (Morgan et al. 
2011), which, given species traits differences, can also 
affect the root–soil C and N flux. Moreover, soil moisture-
driven changes in the N cycle and soil N pools observed 
for this system with climate change (Carrillo et  al. 2012; 
Dijkstra et  al. 2010), are likely to influence the processes 
responsible for root dynamics.

Root morphology is an overlooked variable that may 
mediate changes in root dynamics with climate change. 
Root morphological parameters are responsive to atmos-
pheric CO2 (Anderson et  al. 2010) and warming (Bjork 
et  al. 2007), and have been linked with root turnover and 
lifespan (Eissenstat et  al. 2000; Klumpp and Soussana 
2009). Climate factors may alter community level root 
morphology by modifying plant community composition 
and/or through species-specific responses (Anderson et al. 
2010). We are not aware of field assessments of root mor-
phology under combined elevated CO2 and warming in 
intact grasslands.

Root-derived matter is a major source of stable soil C 
and N (Crow et al. 2009; Garcia-Pausas et al. 2012). Stud-
ies of decomposition under climate change have mostly 
focused on aboveground litter. However, belowground 
decomposition rates and their regulation differ from those 
aboveground (Adair et  al. 2008; Hobbie et  al. 2010; Par-
ton et al. 2007a), and thus climate change may affect them 
differently. Elevated CO2 and warming effects on litter 
decomposition occur through changes in litter degradabil-
ity and the soil environment, including soil moisture, nutri-
ent availability and microbial community structure (Norby 
et al. 2001). Most research has evaluated impacts of climate 
factors via either changes in litter chemistry alone or in 
combination with changes in the soil environment (Chap-
man et  al. 2005; Gorissen and Cotrufo 2000; King et  al. 
2005), but the independent, micro environment-mediated 
impacts on root decomposition occurring in the mineral 
soil have rarely been studied. However, changes in the soil 
environment can have stronger effects on decomposition 
than changes in litter chemistry (Aerts 2006; Cheng et al. 
2010). Our previous work demonstrated that elevated CO2 
and warming substantially altered the aboveground and 
soil environment in the native mixed-grass prairie (Carrillo 
et  al. 2012; Dijkstra et  al. 2012; Morgan et  al. 2011; Nie 
et al. 2013), which may have affected root decomposition.

The complex nature of root responses to climate fac-
tors and the potential for interactive effects together with 
the absence of medium to long-term field experimental 
data currently limit predictions of biomass dynamics and 
its incorporation into ecosystem and global models. Fur-
ther, very few studies have evaluated the dynamics of root 
N during decomposition in climate change field experi-
ments, which is necessary to inform the modelling of 
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potential nutrient regulated processes. We combine field 
community-level observations of fine root standing mass, 
residence time, morphology and seasonal production and 
disappearance with direct decomposition measurements 
of two dominant grass species to assess the impact of ele-
vated CO2, warming and their combination on root C and N 
dynamics in an intact, semiarid, temperate native grassland 
in Wyoming, USA. In order to investigate the role of indi-
rect, moisture mediated effects of elevated CO2, we also 
assessed these variables under an irrigation treatment. Our 
observations spanned a period covering 4 years of warm-
ing and five seasons of elevated CO2. We hypothesised that 
under future high CO2 and warming conditions root pro-
duction would increase due to enhanced plant water rela-
tions and C supply with CO2 and stimulated soil explora-
tion with warming-induced drying. We expected that root 
disappearance and decomposition would not respond to 
future conditions due to counteractive effects of CO2 and 
warming on soil moisture. With increased production and 
neutral impacts on disappearance, we hypothesised greater 
root standing mass. Finally, we anticipated increased bio-
mass would be accompanied by changes in root morphol-
ogy due to a combination of changes in species composi-
tion and resource use strategies.

Methods

Study site

The ecosystem is a northern mixed grass prairie dominated 
by the perennial C4 grass Bouteloua gracilis (H.B.K) Lag. 
and two C3 grasses, Hesperostipa comata Trin and Rupr. 
and Pascopyrum smithii (Rydb.), with ca. 20 % of the bio-
mass composed of sedges and forbs. Belowground biomass 
is ca. three times that of shoots, with ca. 75 % of it located 
in the first 0–15  cm depth (Supporting information, Fig. 
S1). The PHACE (Prairie Heating and CO2 Enrichment) 
experimental site is located at the USDA-ARS High Plains 
Grassland Research Station (1,930 m a.s.l.), 15 km west of 
Cheyenne, WY, USA (41°11′N, 104°54′W). Annual precip-
itation is 384 mm, with ca. 60 % falling during the grow-
ing season (March–September); mean air temperatures are 
17.5 °C in summer and −2.5 °C in winter (NOAA 1994). 
Soils are Mollisols (fine-loamy, mesic Aridic Argius-
toll, mixed Ascalon and Altvan series), with a pH of 7.0 
and organic soil C concentration of 1.9 % (SD = 0.27) at 
0–5 cm (Carrillo et al. 2011).

Experimental set up

The PHACE experiment exposes plots to a factorial combi-
nation of CO2 and temperature (ambient CO2 and ambient 

temperature: ct; ambient CO2 and elevated temperature: 
cT; elevated CO2 and ambient temperature: Ct; elevated 
CO2 and elevated temperature: CT) with five replications. 
Elevated CO2 during the growing season (600 ± 40 ppmv) 
is accomplished via Free Air CO2 Enrichment technol-
ogy (Miglietta et  al. 2001) installed in 3.4-m diameter 
rings. Increased canopy temperature (1.5 °C daytime/3 °C 
night year round) is generated with an hexagonal array of 
1,000-watt Mor FTE infrared heaters (Comstock Park, MI, 
USA) attached to a frame 1.5 m above the ground (Kim-
ball et  al. 2008). The CO2 treatment began in early April 
2006 and heating in early April 2007. Five additional plots 
under ambient CO2 and temperature (ct-i) were irrigated 
during the growing season beginning in 2006 to simulate 
the soil water observed in the elevated CO2 plots. For this, 
volumetric water content (VWC) was closely monitored in 
each plot. In each season, 60 mm of water were distributed 
among four to five watering events in order to maintain 
water content in ct-i plots within ca. 3 % (volumetric) that 
of elevated CO2 plots (Ct).

Environmental monitoring

Soil VWC (5–15 cm depth) was monitored hourly in each 
plot with an Envirosmart sensor (Sentek Sensor Technolo-
gies, Stepney, Australia) situated in a central and stand-
ard location for all plots. Soil temperature was measured 
hourly at 3 cm using thermocouples. Mineral N availability 
(NH4

+ and NO3
−) in soil was assessed using Plant-Root-

Simulator resin probes (PRS™, Western Ag Innovations, 
Saskatoon, SK, Canada). In each of three separate inser-
tion periods (13 May– 21 Oct, 2009; 21 Oct 2009–10 May 
2010; 17 May–19 Oct 2010), two anion and two cation 
probes were inserted vertically into previously undisturbed 
soil. The 5.6 cm resin membranes covered a 2–7.6 cm soil 
depth range. At the end of each insertion period, probes 
were cleaned with deionised water and sent to Western 
Ag Innovations, for elution with 17.5  ml of 0.5  M HCl, 
and analysis with a Technicon Autoanalyzer II (Technicon 
Instrument Corporation, Tarrytown, NY, USA).

Biomass and root morphology

Fine root biomass and its 12C/13C C isotopic composition 
were assessed each year in late July near the time of peak 
aboveground biomass from 2007 to 2010. Three individ-
ual 3-cm diameter, 15  cm deep soil cores were collected 
per plot and composited (75 cores, 25 plots). Fine roots 
(<2 mm) were hand-picked, washed, dried (60 °C) and ash 
content was determined (550  °C). Ash-free dry mass was 
converted to g  m−2 using bulk density measurements for 
each plot. Root biomass up to 2009 and assessment meth-
ods have been reported previously (Morgan et  al. 2011). 
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Here, we report root biomass for 2010 and C isotopic com-
position for all years, at the 0–15 cm depth where 75 % of 
the below ground biomass is located (Figure S1). No treat-
ment effects have been detected in deeper soil (Morgan 
et al. 2011).

Because the elevated CO2 plots were fumigated with 
13C-depleted fuel-derived CO2, it was possible to estimate 
the fraction of new C incorporated into roots by the time of 
each sampling and thus its accumulation over time in these 
plots. For this, we used a two-part mixing model:

where δ13Cer is the δ13C of the community-level roots in 
each elevated CO2 plot, δ13Car is the average 13C of com-
munity-level roots in the ambient CO2 plots, representing 
the isotopic composition prior to fumigation (evaluation of 
δ13C of community-level roots was done on the same roots 
collected for biomass and other variables); and δ13Cs is the 
weighted δ13C of the plant shoots in each elevated CO2 
plot in each year, representing the isotopic composition of 
newly fixed C at the community level (Pendall et al. 2004). 
To estimate this value, we harvested each species in an area 
of 0.75 m2 in each plot within 1 week of time of soil and 
root collection, analysed it separately for total biomass and 
δ13C and then calculated the weighted δ13C for each plot 
(thus accounting for treatment driven responses in commu-
nity composition). Measurements of δ13C were done using 
an elemental analyzer connected to a mass spectrometer 
(20-20 Stable Isotope Analyzer; Europa Scientific, Chesh-
ire, UK, for roots; Finnigan DeltaPlus XP connected to a 
Carlo Erba NC-2500 elemental analyzer via a Finnigan 
ConFlo III open-split interface, for shoots). The calculated 
fraction of new C was applied to the total pool of standing 
biomass to calculate new C biomass. From the annual rate 
of root C replacement over the 5.25 years of fumigation we 
calculated root C residence time (Pendall et al. 2004). This 
method assumes equal representation of species above and 
belowground, as well as steady-state biomass and equiva-
lent allocation to non-structural C pools (Luo 2003).

To evaluate root morphology, approximately half of the 
2010 roots (<2 mm which are the great majority of the roots 
in this ecosystem) were hand-picked while fresh, cleaned 
of excess soil and arranged for digital scanning at 800 dpi 
(Epson Perfection 4870). Images were analyzed automati-
cally with WinRhizo Pro software (Regents Instruments, 
Inc., Quebec) for length, diameter, volume and surface 
area. Scanned roots were then washed, dried and weighed.

Minirhizotron observations of root production 
and disappearance

In early April, 2006 minirhizotron access tubes were 
installed at a 23° angle from soil surface in each of the 

Fraction new C = (δ13
Cer − δ13

Car)/(δ
13

Cs − δ13
Car)

25 PHACE plots we studied. Access tubes were made of 
clear cellulose acetate butyrate plastic with a 4.4 cm inside 
diameter, and span a horizontal distance of nearly 1 m and 
a depth of 42 cm. Aboveground portions of the tubes were 
covered with reflective insulating material and a capped 
PVC pipe that blocked sunlight to prevent direct solar heat-
ing. Tube bottoms and tops were sealed with rubber stop-
pers. Tubes were placed in a central and standard location 
for all plots. Bitmap images (1.2 mega pixels each) were 
taken at 1 cm depth intervals from the soil surface with the 
Bartz BTC 100× video microscope with an indexing han-
dle, assuring relocation in the same spot in each session 
(Bartz Technology Corporation, Carpinteria, CA USA). 
Measurements began in April 2007 (allowing 1  year for 
adjustment to the disturbance), and continued each year at 
5-week intervals until soil freezing (usually six sessions/
year). Previous studies in a very similar grassland ecosys-
tem suggest that 4–5 measurements per growing season 
(every 5–4 weeks) are adequate to assess root dynamics in 
semi-arid grasslands with slow root turnover times (Mil-
chunas 2009; Milchunas et  al. 2005). Since equilibration 
around the access tube can take years, we used the most 
recent data (2009 and 2010; ten sessions). Root num-
ber data were pooled over 0–15 cm and 15–40 soil depth. 
Root images were digitally analyzed using the RooTracker 
software (David Tremmel, Duke University, Durham, NC, 
USA). We report numbers of new roots produced and 
numbers of roots that disappeared in relation to the prior 
observation.

Root decomposition

Decomposition was assessed using standard buried lit-
ter bag methods with field-collected roots (e.g. Berg 
and McClaugherty 2003; Bontti et al. 2009; Parton et al. 
2007a). While the magnitude of decay rates are likely 
to be somewhat impacted by the litter bag methodology, 
treatment effects shed light on the natural processes acting 
on buried tissue. Roots were collected in September 2007 
from the experimental site, outside the treatment plots. 
Placing off-plot roots in different experimental treatments 
allowed us to assess the effects of CO2 and warming-
induced changes in the soil environment on species-level 
litter decomposition. Soil (0–15 cm depth) from naturally 
occurring mono-specific patches of the C4 grass B. gra-
cilis and the C3 grass H. comata was excavated and roots 
(<2 mm diameter) were hand-picked. Roots were washed 
free of soil and dried at 50 °C. We placed 500 mg of dried 
material in 3-cm × 6-cm, 25-μm pore Ankom F-57 fab-
ric bags (Macedon, NY, USA). The pore size of the bag 
material should have allowed access to microbial decom-
posers, as well as members of the microfauna (Coleman 
et  al. 2004). In early November 2007, five bags of each 
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species were buried in each of the 25 experimental plots 
(250 bags). To bury the bags, we chiseled 3-cm wide slots 
at 45° angles down to 7 cm in depth, slipped a bag inside 
and gently packed the soil above. Bags were arranged 
in lines ca. 10  cm apart from each other. One bag from 
each species, treatment and plot was removed in early 
April and early October in 2008 and 2009 and finally 
in early October in 2010. Once removed, bags and their 
contents were dried at 60  °C. Bags were then cut open 
to remove and weigh the contents. Initial pre-incubation 
and decomposed materials were ground to fine powder to 
determine mineral ash and C and N content. % C and % 
N were measured on a Finnigan DeltaPlus XP connected 
to a Carlo Erba NC-2500 elemental analyzer via a Finni-
gan ConFlo III open-split interface. Mass remaining and 
element percentages were both corrected for ash content 
(after 3 h at 550 °C), so all data reported are on an ash-
free basis. Mass loss rate constants (km) and N loss rate 
constants (kn) were estimated by fitting a single negative 
exponential decay model to the values of remaining mass 
after constraining the intercept to be 100 % ± 5 % (Har-
mon et al. 2009).

Statistical analyses

We used two-factor ANOVA to test for the effects of CO2, 
warming and their interactions on mean soil water and 
temperature, PRS-N, root biomass, and root morphol-
ogy parameters. Effects of irrigation were assessed with 
t tests comparing ct against ct-i. Minirhizotron root pro-
duction and disappearance were analyzed with repeated 
measures ANOVA using JMP multivariate approach with 
plot and time as random effects, CO2 and warming as 
fixed effects and considering all interactions. Mass loss 
rate and N loss rate (relative to initial N content) constants 
were estimated for each plot using non-linear regression 
tools in SigmaPlot (version 10.0 Systat Software Inc., San 
Jose, CA, USA). Treatment effects on mass loss rates (k) 
were assessed with three-factor (CO2, warming, species) 
and two factor (irrigation, species) ANOVA with all inter-
actions. Effects of CO2, warming and species on release 
of N with mass loss were assessed with ANCOVA (CO2, 
warming, species as factors and % mass loss as the con-
tinuous variable). Subsequently, we conducted ANCOVA 
for each species. Effects of irrigation were evaluated with 
ANCOVA (irrigation, species as factors and % mass loss 
as continuous variable). Linear regressions between % 
mass loss and % N remaining were conducted for each 
experimental treatment and species. ANOVA, ANCOVA 
and linear regressions were performed with JMP (version 
7.0; SAS Institute, Cary, N.C. USA). Significant effects 
and relationships are reported at p < 0.05 unless otherwise 
stated.

Results

Soil water, temperature and N availability

Percentage of soil water content was 2.4  % higher under 
elevated CO2, 0.8  % lower under warming and 1.2  % 
higher under combined elevated CO2 and warming 
(Table 1). The irrigation treatment increased water content 
by 2.2  %, thus closely mimicking the increase with ele-
vated CO2 (Table  1). Warming increased soil temperature 
at 3-cm depth by 2.8 °C on average across the elevated CO2 
treatments (Table  1). These treatment effects on overall 
averages are reflective of dominant effects across seasons 
(see Carrillo et al. (2012) and Pendall et al. (2013)). PRS-
available N (NO3

− + NH4
+) decreased with elevated CO2 

and increased with warming under ambient CO2, but was 
not affected by warming under elevated CO2 or by irriga-
tion (Table 1).

Root biomass and morphology

At the time of aboveground peak biomass in 2010, after 
5 years of elevated CO2 and 4 years of warming, 0–15 cm 
fine root biomass estimated from soil cores was, on aver-
age, 30 % greater under elevated CO2, and was unaffected 
by warming (Fig.  1a). The irrigation treatment resulted in 
a 15  % decrease in fine root biomass (Fig.  1a). Based on 
isotopic partitioning, we estimated that by 2010 (5.25 years 

Table 1   Average soil moisture content, soil temperature and soil N 
availability (from Plant Root Simulator probes, PRS-N) under CO2, 
warming and irrigation treatments at PHACE

ct ambient CO2, unwarmed; cT ambient CO2, warmed; Ct elevated 
CO2, unwarmed; CT elevated CO2, warmed; ct-i ambient CO2, 
unwarmed, irrigated plots. Moisture (5–15  cm) and temperature 
(3  cm) are daily averages (Nov 2007–Nov 2010). PRS-N is total N 
collected in 10  cm−2 of resin membrane at 2–7.6  cm in each plot 
between (2009 and 2010). Values are means of five replicates with 
standard errors in parentheses. ANOVA and t test results are p values

Soil water  
content  
(% VWC)

Soil  
temperature 
(°C)

PRS-N (μg)

ct 12.6 (0.7) 10.1 (0.4) 60.2 (15.3)

cT 11.8 (0.3) 13.1 (0.5) 116.9 (24.2)

Ct 15.0 (0.6) 9.7 (0.3) 37.4 (10.2)

CT 13.8 (0.8) 12.3 (0.4) 35.6 (7.8)

ct-i 14.8 (0.8) 9.5 (0.3) 41.8 (3.5)

ANOVA

 CO2 0.002 0.2 0.003

 Warming 0.09 <0.0001 0.08

 CO2 × warming 0.8 0.6 0.06

t test (ct vs ct-i)

 Irrigation 0.04 0.14 0.15
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since the beginning of CO2 fumigation; elevated CO2 plots 
only), on average, 74 and 87  % of the root biomass had 
been replaced by “new C” in the Ct and CT treatments, 
respectively. The rate of replacement of root biomass over 
the years indicated a mean residence time of 7.0 years for 
Ct and 6.0 years for C (comparable to those by Milchunas 
et al. (2005) obtained using minirhizotron data in a similar 
grassland), although no significant effect of warming was 
detected (p > 0.05; Fig. 1b). Based on these estimations, the 
span of our observations should have allowed sufficient time 
for responses to experimental manipulations to develop.

Average root diameter under ambient conditions was 
0.28 mm and decreased with elevated CO2 by 15 % on aver-
age (Fig.  2a). Elevated CO2 increased specific root length 
(length per unit of mass) and fine root surface area per unit 
of root volume, particularly in combination with warming (25 
and 39  % increases respectively; Fig.  2b, c). Given greater 
total root biomass and volume (not shown), these changes 
translated into greater total root length and surface area. A 
trend towards increased tissue density in CT plots was not sig-
nificant (Fig. 2d). Irrigation did not impact root morphology.

Minirhizotron observations

Overall, both root production and disappearance showed 
stronger seasonality at the 0–15 cm depth than at 15–40 cm 
depth, and in 2009 than in 2010 (Fig. 3a, b; deeper roots val-
ues in Fig. S2). Root production was highly variable over 
time and peaked around July in both years, coincident with 
peak aboveground biomass in this system (Morgan et  al. 

2011), when it reached values of up to four times those during 
the rest of the year (Fig. 3a). Root production responded to 
experimental treatments only at the 0–15 cm depth (Fig. 3a), 
where elevated CO2 increased root production during most 
periods, although mainly under ambient temperature condi-
tions when it was often doubled (significant CO2 × warming 
interaction; Fig. 3a). Irrigation also increased root production 
relative to the control conditions (Fig. 3a). As with produc-
tion, root disappearance was dependent on time, but was more 
evenly distributed across seasons. Highest disappearance was 
observed around June–September in 2009, but no clear trend 
was detected in 2010 (Fig. 3b). Warming increased disappear-
ance around the end of the growing season in 2009 (Fig. 3b; 
also the case in deeper roots, Fig S2). Although elevated CO2 
also interacted significantly with time to influence disappear-
ance, no clear trend was evident.

Fine root litter mass loss

Mass loss for H. comata root litter occurred significantly 
faster than for B. gracilis: on average, after 3  years of 
decomposition, 46 and 52 % of ash free dry mass remained 
in the bags, respectively (Fig.  4a, b). The average mass 
loss rate constant (km) was 0.32 year−1 for H. comata and 
0.24 year−1 for B. gracilis; as a result, there was a signifi-
cant effect of species on mass loss rate constants (Table 2). 
Warming had no detectable effect on km (Fig.  4a, b; 
Table  2). Elevated CO2 significantly accelerated decom-
position by an average of 10  % (increased km) and this 
effect appeared stronger for H. comata root litter, although 
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no significant interaction was found (Table  2). Irrigation 
did not have a significant effect on mass loss (Fig.  4a, b; 
Table 2).

Fine root litter N dynamics

Initial N concentration was higher for H. comata 
(%N = 1.20, SD = 0.06) than for B. gracilis (%N = 0.94, 
SD = 0.04). Over the full period of decomposition of both 

species, only net release and no net immobilization of N 
took place. On average, after 3 years of decomposition, 71 
and 67 % of the initial N content remained in the litter of 
H. comata and B. gracilis, respectively (Fig. 4c, d), so that 
the N loss rate constant (kn) was significantly greater for B. 
gracilis than for H. comata (Fig. 4c, d; Table 2). There was 
no effect of warming, CO2 or irrigation on kn (Table 2). The 
fraction of N remaining in litter decreased linearly with 
mass loss at a rate that was dependent on species and CO2 
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Table 2 for statistical tests
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(interactive effect CO2 × species × mass loss; Table 3; Fig. 
S3). That is, when accounting for the expected variation in 
N remaining due to mass loss, B. gracilis litter decompos-
ing under elevated CO2 lost N at a slower rate than under 
ambient conditions, while for H. comata, the rate slightly 
increased under elevated CO2 (average % N lost per unit of 
mass loss: 0.79 and 0.62 for B. gracilis litter and 0.48 and 
0.55 for H. comata litter under ambient and elevated CO2, 
respectively; Table 3; interactive effect of CO2 × mass loss 
in ANCOVA for B. gracilis, p =  0.03). Irrigation did not 
affect the decrease in remaining N with mass loss (p > 0.05 
in ANCOVA).

Discussion

Despite variable responses across years of the aboveground 
biomass, including positive and neutral effects of CO2 
(Morgan et al. 2011), after five seasons of elevated CO2—
when ca. 70–80 % of the biomass had been replaced—root 
standing mass clearly had increased with elevated CO2, 
independent of the warming treatment. This observation is 
consistent with the trajectory of the aboveground biomass 
observed in previous years (Morgan et al. 2011). This effect 
is often attributed to increased production (Wang et  al. 
2012). As hypothesised, root production was significantly 
greater under Ct during most periods and cumulatively, and 

greater during most periods under CT compared to the con-
trol (although not significantly overall), suggesting that root 
production was stimulated by elevated CO2 (de Graaff et al. 
2006, Milchunas et al. 2005). However, the increase in pro-
duction under Ct (75  %) was not matched by an equiva-
lent increase in root disappearance (21 %) (insets in Fig. 3), 
suggesting a reduction in “per capita” loss, i.e. the frac-
tion of produced roots that were lost—as opposed to a net 
reduction in disappearance. These findings for a semi-arid 
grassland contrast with observations in mesic grasslands 
where no changes in production or loss with elevated CO2 
were observed (Arnone et  al. 2000; Pilon et  al. 2013) or 
where increases in production were matched by increases 
in loss (Fitter et al. 1996). Thus, our observations suggest 
that greater root standing mass under CT resulted mainly 
from increased production, whereas those under Ct resulted 
from both increased production and reduced per-capita root 
disappearance.

As hypothesised, elevated CO2 and warming (CT) had 
important synergistic impacts on root production and mor-
phology. Roots under CT were longer (per unit of mass and 
in total), thinner, and had greater surface area relative to 
the control or Ct (Fig. 2). Although standing masses were 
equivalent under Ct and CT, under CT the positive effect 
of elevated CO2 on the number of roots produced was par-
tially suppressed by warming (Fig.  3a). Fewer roots pro-
duced under CT than Ct which had more length and were 
denser (although not significantly) could have resulted in 
similar standing mass pools as in the Ct plots. Our observa-
tions thus suggest that expected future warmer and elevated 
CO2 conditions may generate roots that will differ in func-
tion and dynamics, beyond the sole impacts of their greater 
biomass. For example longer, thinner roots with higher sur-
face area should decay faster (Gartner and Cardon 2004; 
Gillon et  al. 1994). Also, greater specific root length and 
root surface area, combined with a greater overall biomass 
pool, should enhance rhizosphere-mediated processes such 
as priming of soil organic matter (Kuzyakov 2010). The 
clear impact of future conditions on this grassland’s root 
morphology highlights the need to directly assess root mor-
phology-mediated impacts of climate change.

Community level morphological changes, particularly 
thinner, longer roots could have resulted from increased 
soil exploration for water, as a response to desiccation with 
warming, and for nutrients with elevated CO2 (Zak et  al. 
2011), where N availability decreased. However, shifts 
in plant community composition probably also played a 
role in these responses. By the fourth season of elevated 
CO2, the combination of elevated CO2 and warming had 
favoured the growth of the dominant C4 grass studied here 
(Morgan et al. 2011), which is characterised by a profusely 
branched laterally extending system of very fine roots 
(Weaver 1920).

Table 2   Results of ANOVA on the effects of CO2, warming, plant 
species and irrigation on mass (km) and N (kn) loss rates of buried root 
litter of Bouteloua gracilis and Hesperostipa comata at PHACE

Degrees of freedom: 1 for each of the sources of variation, and 31 and 
15 for the error in the main and irrigation ANOVA, respectively

p values in bold are considered significant

Mass loss rate (km) N loss rate 
(kn)

F p F p

ANOVA

 Source of variation

  Species 24.8 <0.0001 4.2 0.05

  CO2 7.1 0.01 0.0 1.0

  Warming 0.6 0.5 3.0 0.09

  Species × CO2 2.5 0.1 1.4 0.2

  Species × warming 0.5 0.5 0.5 0.5

  CO2 × warming 0.5 0.5 0.6 0.5

  Species × CO2 × warming 0.0 1.0 0.1 0.7

ANOVA irrigation

 Source of variation

  Species 14.0 0.002 4.6 0.04

  Irrigation 0.01 0.9 0.2 0.7

  Species × irrigation 2.4 0.2 0.1 0.7
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Our observation that elevated CO2 increased mass loss 
rates independent of warming treatment is contrary to 
expectations, and suggests that its impacts on the soil envi-
ronment enhanced root decomposition. Greater mass loss 
rates in this water-limited system may be partly explained 
by the increase in soil moisture with elevated CO2 (Bontti 
et  al. 2009). While impacts of the irrigation treatment 
should be interpreted with care as greater moisture due to 
water addition is not fully equivalent to lower water loss 
with lower transpiration, the lack of a detectable impact of 
irrigation on mass loss, suggests that moisture was not the 
principal factor responsible for accelerated mass loss under 
elevated CO2. Soil labile C availability may have played 
a role in the response of decomposition as it can enhance 
mass loss (de Graaff et  al. 2010) and we have detected 

increases in the labile C pool with elevated CO2 at PHACE 
(Carrillo et al. 2011). The absence of a warming effect on 
mass loss could be explained by enhanced decomposition 
with higher temperatures being counteracted by reduced 
decomposition with desiccation (Cheng et al. 2010). It also 
supports the expectation that higher temperatures will only 
increase decomposition in grasslands when water limita-
tion is not present (Bontti et al. 2009). The positive effect 
of CO2 on decomposition concomitant with reduced per-
capita disappearance, which encompasses both death and 
decomposition, suggests a decoupling of the latter two pro-
cesses. Therefore, changes in root disappearance of roots in 
rhizotron images should not be interpreted simply as corre-
sponding changes in mortality—commonly done in the lit-
erature—as they may instead be driven by decomposition. 

Table 3   Percentage of original N remaining as a linear function of mass loss over 3 years of decomposition of buried root litter and results from 
ANCOVA on percentage N remaining

Bold values indicate statistical significance at p values

ct ambient CO2, unwarmed; cT ambient CO2, warmed; Ct elevated CO2, unwarmed; CT elevated CO2, warmed; ct-i ambient CO2, unwarmed, 
irrigated plots. ANCOVA results presented are for main treatments and their interaction, degrees of freedom = 1 in all tests

Species Treatment Equation r2

B. gracilis ct-i %N remaining = 99.0 − 0.82 × % mass loss 0.82

ct %N remaining = 101.6 − 0.83 × % mass loss 0.84

cT %N remaining = 99.6 − 0.75 × % mass loss 0.75

Ct %N remaining = 96.1 − 0.66 × % mass loss 0.75

CT %N remaining = 97.7 − 0.58 × % mass loss 0.63

H. comata ct-i %N remaining = 100.8 − 0.59 × % mass loss 0.82

ct %N remaining = 99.0 − 0.47 × % mass loss 0.71

cT %N remaining = 100.6 − 0.48 × % mass loss 0.74

Ct %N remaining = 101.5 − 0.61 × % mass loss 0.74

CT %N remaining = 98.7 − 0.48 × % mass loss 0.58

Source of variation F ratio Prob > F

ANCOVA

 Species 52.0 <0.0001

 CO2 0.2 0.655

 Warming 2.8 0.098

 % mass loss 582.3 <0.0001

 Species × CO2 2.0 0.163

 Species × warming 0.3 0.596

 CO2 × warming 0.6 0.433

 Species × CO2 × warming 1.3 0.260

 Species × % mass loss 15.0 0.0001

 CO2 × % mass loss 0.8 0.359

 Species × CO2 × % mass loss 5.7 0.018

 Warming  × % mass loss 1.9 0.167

 Species × warming × % mass loss 0.0 0.846

 CO2 × warming × % mass loss 0.4 0.513

 Species × CO2 × warming × % mass loss 0.5 0.494
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Combining minirizotron observations with concurrent 
direct measurements of standing stocks and mass loss has 
the potential to improve our insight into root dynamics.

We observed increased mass loss with elevated CO2 in 
both species studied, which together comprise over 50  % 
of the aboveground biomass in this system, suggesting that 
fine root decomposition at the ecosystem scale is likely to 
respond positively to increased CO2. Because we measured 
decomposition of common root material within the plots, it 
does not include effects mediated by root chemistry or mor-
phology. We anticipate that the observed increase in decom-
position due to the soil environment will not be strongly 
influenced by root chemistry, but is likely to be enhanced 
by changes in root morphology, as found in a comparison 
of switchgrass cultivars (de Graaff et  al. 2013). As noted 
above, longer thinner roots, with more surface area under 
elevated CO2 and warming are expected to enhance decom-
position rates, and therefore our decomposition rates under 
elevated CO2 may have been underestimated. However, it 
is unlikely that direct impacts of changes in litter chemis-
try would be a major driver of long-term mass loss in this 
system (Norby et al. 2001). In other systems, most experi-
ments have not detected root chemistry-mediated effects of 
CO2 on decomposition (Allard et al. 2004; Chapman et al. 
2005; de Graaff et al. 2011; Dilustro et al. 2001; King et al. 
2005; Van Vuuren et  al. 2000) while some have detected 
modest decreases (Gorissen and Cotrufo 2000; Gorissen 
et al. 1995; Lutze et al. 2000). Moreover, the latter results 
were mostly observed in laboratory studies and during 
early-stage decomposition when N concentration is the 
main factor driving decay (Berg and McClaugherty 2003).

Some studies have suggested that increased decomposi-
tion with elevated CO2 can offset the effects of increased 
C inputs with greater biomass, thus leading to no net accu-
mulation of soil C (Sindhoj et  al. 2000; Xie et  al. 2005). 
PHACE modelling predictions by Parton et  al. (2007b) 
showed a gradual decrease of soil C with elevated CO2 
despite increased production, due to more rapid decompo-
sition. Our observations of enhanced mass loss are consist-
ent with ecosystem-level C exchange measurements indi-
cating net C loss with elevated CO2 (Pendall et al. 2013). 
In addition, there are no indications of increases in the total 
or resistant soil organic C at PHACE with elevated CO2 
(Carrillo et al. 2011 and recent unpublished data), despite 
greater production. Together with these, our results suggest 
increased root mass loss, due to changes in soil environ-
mental conditions, has contributed to the net ecosystem C 
loss, and support the prediction that increased decomposi-
tion will tend to offset greater C inputs as CO2 concentra-
tions rise.

When comparing the dynamics of the fraction of N 
remaining as a function of mass loss (Berg and McClaugh-
erty 2003; Parton et  al. 2007a), we observed that net N 

retention in B. gracilis litter (the C4 species with the lowest 
N concentration) was increased by the soil environmental 
conditions present under elevated CO2, particularly when 
combined with warming. Greater net N retention could 
have been caused by increased N accrual and/or decreased 
release. Increased accrual would be consistent with reduced 
N availability in soil as detected via resin probes. Dilustro 
et al. (2001) attributed increased accrual in litter to greater 
microbial N demand under elevated CO2, consistent with 
higher overall microbial demand under elevated CO2 at 
PHACE (Dijkstra et al. 2010). Given the dominance of this 
C4 grass and evidence that suggests it will remain competi-
tive under future conditions (Morgan et  al. 2011), greater 
retention of N in its decomposing litter has the potential 
to alter soil N availability. Increased N retention concur-
rent with greater mass loss with elevated CO2 provides an 
example of species-level decoupling of C and N cycling 
of belowground litter resulting from climate change, and 
presents the question of whether or not this is a common 
response across species and ecosystems.

The impact of climate change on root dynamics and the 
cycling of C and nutrients from roots to soil will occur via 
multiple, simultaneous and difficult-to-observe processes. 
Our multifaceted approach evaluating standing root mass, 
residence time, production, disappearance, decomposition 
and morphology provided important insights into the com-
plex belowground responses of the native North American 
mixed-grass prairie to anticipated climate conditions. Our 
findings place the turnover of the fine roots in the native 
mixed-grass prairie among the lowest for temperate grass-
lands (Gill and Jackson 2000). In contrast to mesic grass-
lands, in this semiarid grassland elevated CO2 increased 
fine root standing mass by both increasing production and 
decreasing per-capita disappearance. We found that ele-
vated CO2, particularly in combination with warming, pro-
duced roots with distinctive morphological traits that could 
potentially lead to enhanced decay rates and rhizosphere-
mediated soil organic matter decomposition. These obser-
vations highlight the importance of morphology-mediated 
impacts of climate change and of ‘looking beyond’ the 
biomass. Root litter decomposition increased in the soil 
environmental conditions generated by elevated CO2, but 
not in those generated by warming, likely due to the water-
limited nature of this system and the desiccation generated 
by warming. Thus, while we cannot be sure how future cli-
mate’s impact on the soil physicochemical environment, 
litter chemistry, plant community and morphology together 
will affect root decomposition, we hypothesise that they 
will tend to increase decomposition and limit the future 
net soil C accrual expected from greater root standing 
mass. Our observations also suggest that increased N reten-
tion in decomposing litter of some species under elevated 
CO2 could alter N availability in the mineral soil, through 
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treatment effects on species composition with potential 
ecosystem-scale impacts. The strong collection of medium/
long-term field data on the responses of grassland roots to 
individual and combined climate change factors presented 
here should also be of value for ongoing and future model-
ling efforts.
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